

Grade 11/12 Math Circles November 8, 2023 P-adic numbers, Part 2 - Solutions

Exercise Solutions

Exercise 1

Find solution for y if $x = \frac{1}{2}$. Is it a rational number?

Exercise 1 Solution

Let $x = \frac{1}{2}$, then $y^2 = (\frac{1}{2})^2 + (\frac{1}{2})^4 + (\frac{1}{2})^8 = \frac{1}{4} + \frac{1}{16} + \frac{1}{256} = \frac{81}{256}$, therefore $y = \sqrt{\frac{81}{256}} = \frac{9}{16}$ is indeed rational.

Exercise 2

Check that $x_1 = 1$ is a solution to $3 + 15x_1 =_9 0$.

Exercise 2 Solution

 $3 + 15x_1 = 3 + 15 = 18$. The remainder of 18 after division by 9 is 0, so the equality holds.

Exercise 3

What's bigger the distance between $s_1 = \dots 010101$ and $s_2 = \dots 101010$ or the absolute value of their sum in 3-adics?

Exercise 3 Solution

$$s_2 - s_1 = \dots 101010 + \dots 212122 = \dots 020202,$$

 \mathbf{SO}

$$s_2 + s_1 = \dots 111111,$$

$$|s_1 - s_2|_3 = |\dots 020202|_3 = 0$$

$$|s_1 + s_2|_3 = |\dots 111111|_3 = 0.$$

We observe that the distance is the same as the absolute value of the sum.

Problem Set Solutions

1. Find all solutions to $x^2 = 1 \mod 11$ and $\mod 13$.

Solution: There are two solutions to $x^2 = 1 \mod 11$, namely 1 and $-1 =_{11} 10$:

$$1^2 =_{11} 1, \quad (-1)^2 =_{11} = (10^2) =_{11} 100 =_{11} 1$$

The same thing goes for mod 13.

2. For p = 3, x = 36, we have that $x = 1100_3$. Find $|x^2|_p$.

Solution: Start by finding $36^2 = 1296$ in base 10. Then we calculate $1296 = 1210000_3$ in base 3 by dividing it by powers of 3 starting with 3^6 . Next we compute $|x^2|_3 = |1210000|_3 = 3^{-5}$.

3. Show that if x is a rational number then the product of all the numbers $|x|_p$ for p a prime is 1.

Solution: Expanding a rational number x by prime factors

$$x = \pm p_1^{a_1} p_2^{a_2} \dots p_n^{a_n},$$

where p_j are different prime numbers, a_j are integers, and using definition of p-adic absolute

value, we obtain

$$|x|_{p_j} = p_j^{-a_j}, \quad |x|_p = 1, p \neq p_j, \quad |x|_{\infty} = p_1^{-a_1} p_2^{-a_2} \dots p_n^{-a_n}.$$

These facts imply our statement.

4. Show that $d(x, z) = |x - z|_p \le d(x, y) + d(y, z)$ for integer *p*-adic numbers. Better still, show that $d(x, z) \le \max d(x, y), d(y, z)$.

Solution: Let $z = \pm \sum_{j} a_{j} p^{j} = a_{0} p^{0} + a_{1} p^{1} + \dots$, and let k be the first index such that $a_{k} \neq 0$.

Keeping that in mind. If k is the highest power that divides xy and j is the highest power that divides yz. If $k \neq j$ and $min(k, j) < m \leq max(k, j)$, then p^m will divide one of xy or yz but not the other so $p^m(xy) + (yz)| = xz$.

In that case the highest power that divides xz is $\min(k, j)$ and $|xz| = p^{-\min(k,j)} = \max(p^k, p^j) = \max(|xy|_p, |yz|_p).$

If on the other hand if k = j then the maximum power that divides (xy) + (yz) = xz is k = j and $|xz| \le |xy|_p = |yz|_p$ so

$$d(x, z) \le \max(d(x, y), d(y, z))$$

and thus

$$d(x, z) \le \max(d(x, y), d(y, z)) + \min(d(x, y), d(y, z)) = d(x, y) + d(y, z).$$